MSE-821 Mechanical Behavior of Materials - 3 CHs

Prerequisite - Nil Category: Elective Course

Existing Course Contents	Proposed Changes
 Course contents: Shear Forces and Bending Moments, Torsion, Analysis of Stress and Strain, Shear stress and plastic deformation, Critical resolved shear stress for slip, Slip systems, Generation and mutual interactions of dislocations, Tension test & Stages of fatigue. Compression and hardness testing, Types of fracture, Fracture Mechanics, Rate and Temperature dependent deformation, Visco-elastic Behavior, Impact testing, Creep deformation, Creep rupture, Fatigue failure, Stress cycles and S-N curve. 	 Course contents: Elastic stress-strain relationship; Strain energy density; Shear stress and strain; Pure shear; Biaxial state of stress; Mohr's circle; Triaxial state of stress; Elastic anisotropy; Visco-elasticity; Plastic deformation of metals in tension and compression; Bauschinger's effect; True stress-strain relation and the flow stress; Failure criteria. Atomic point defects; Observation, behaviour, stress field, energy and sources of dislocations; Peierls-Nabarro stress; Dislocations in various structures (fcc, bcc, hcp); Dislocation movement, interaction and pile-up; Strain hardening in the fcc; temperature and strain rate effects; Strengthening mechanisms in metals (work hardening, grain size, solid solution, particle strengthening); Development of crystalline solids for maximum strength. Fracture and fracture mechanism(s); Creep and super-plasticity; Fatigue; Martensitic transformation.

Proposed Weekly Plan for the Concerned Faculty

Week/Lecture	Торіс
1-6	Elastic stress-strain relationship; Strain energy density; Shear stress and strain; Pure shear; Biaxial state of stress; Mohr's circle; Triaxial state of stress; Elastic anisotropy; Visco-elasticity; Plastic deformation of metals in tension and compression; Bauschinger's effect; True stress-strain relation and the flow stress; Failure criteria.
7-14	Atomic point defects; Observation, behaviour, stress field, energy and sources of dislocations; Peierls-Nabarro stress; Dislocations in various structures (fcc, bcc, hcp); Dislocation movement, interaction and pile-up; Strain hardening in the fcc; temperature and strain rate effects; Strengthening mechanisms in metals (work hardening, grain size, solid solution, particle strengthening); Development of crystalline solids for maximum strength.
15-17	Fracture and fracture mechanism(s); Creep and super-plasticity; Fatigue; Martensitic transformation.